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1 Introduction

A fundamental problem in data structures is to maintain and query a structure that

represents a dynamically-changing tree. Several approaches have been given in the

last decade, including dynamic trees [STl], splay trees [ST2], topology trees [Fl],

and restricted topology trees [F2] , [F3]. The dynamic trees and the splay trees have

found application in algorithms for finding a maximum flow [STl], [ST2], [GT], in data

structures for updating minimum spanning trees of plane graphs [EITTWY], in data

structures for maintaining dynamic expression trees leT], and in finding a separator

decomposition of a planar graph [G]. The topology trees and restricted topology

trees have found application in data structures for updating minimum spanning trees

and maintaining connectivity information [Fl], in data structures for updating 2

edge-connectivity information [F2], [F3] and in an algorithm to find the k smallest

spanning trees of a graph [F2], [F3].

The above approaches may all be loosely characterized as maintaining a tree as a

set of paths, with the main differences being how the representations of the paths are

combined together. In this paper we show how to adapt topology trees to handle the

applications for which dynamic trees are useful. In particular, we present a version of

restricted topology trees, which we call directed topology trees, which can be used to

represent binary trees. Each operation in a directed topology tree uses G(log n) time,

where n is the number of nodes in the trees. We give an implementation of link-cut

trees [STl] in terms of directed topology trees, and show how these can be used in the

Goldberg-Tarjan maximum flow algorithm. (We use the term link-cut tree to refer

to a generic data structure that admits link, cut and related operations, and refer

specifically to the implementations of link-cut trees in [STl] as dynamic trees.) We

also give an implementation of dynamic expression trees in terms of directed topology
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trees. Our implementation of dynamic expression trees appears to be conceptually

simpler than that in [CTj. Finally, we give the results of computational experiments

designed to test the competitiveness of directed topology trees against splay trees as

used in the Goldberg-Tarjan maximum flow algorithm.

While we do not improve on the worst-case operation times, we do present an

alternative data structure for these problems. One advantage of directed topology

trees appears to be that the paths that collectively constitute a tree are more cleanly

organized into a single unified data structure. It is not necessary to represent each

path by a complicated structure such as a biased search tree [BSTj, or by a self

a.djusting structure with less intuitive rebalancing rules and delicate amortization

arguments. As claimed previously, directed topology trees seem to lead to simpler

representations of dynamic expression trees than dynamic trees. As a disadvantage,

we note that the directed topology trees appear to use more space (by a constant

factor) than splay trees. It is not clear whether directed topology trees use more

space on average than dynamic trees. Another potential disadvantage is that directed

topology trees represent binary trees, and trees with greater degree must be adapted

by specific t.echniques. We note that this does not appear to incur an unreasonable

penalty, as the results in our experiments with regard to the maximum flow problem

show.

Our paper is organized as follows. In section 2 we review the topology tree data

st.ructure. In section 3 we review link-cut trees. In section 4 we describe our directed

topology tree data structure. In section 5 we describe our implementation of link-cut

trees in terms of directed topology trees, and discuss modifications necessary to use

them in the Goldberg-Tarjan algorithm for finding a maximum flow. In section 6 we

describe our implementation of dynamic expression trees. In section 7 we present the

result of experiments to compare the performance of the dynamic trees of Sleator and
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Tarjan with our directed topology trees.

2 Review of topology trees

In this section we review basic data structures from [F2], [F3]. We recall from [F2],

[F3] the definitions of a vertex cluster, a restricted partition, and a restricted multi

level partition. Following [F2], [F3], we define a "topology tree" based on the re-

stricted multi-level partition.

Let T be an undirected tree defined on the vertex set V with maximum vertex

degree at most 3. A vertex cluster with respect to T is a set of vertices such that the

subgraph of T induced on the cluster is connected. The degree of a vertex cluster is

the number of edges with precisely one endpoint in the cluster. Two vertex clusters

are adjacent if there is an edge with one endpoint in each of the clusters.

We define a partition of a set of vertices so that the resulting vertex clusters

possess certain nice properties. A restricted partition of a tree T of maximum degree

3 is a partition of V such that

1. Each cluster of degree 3 is of cardinality 1.

2. Each cluster of degree less than 3 is of cardinality at most 2.

3. No two adjacent clusters can be combined and still satisfy the above.

Note that each set in the partition will be a vertex cluster of degree at most 3.

We next define our restricted multi-level partition. A restricted multi-level parti-

tion is a set of partitions of V that satisfy the following:

1. For each level I = 0,1" .. ,q, the vertex clusters at level 1 form a partition of V.

2. The clusters at level a each contain one vertex.

3. The clusters at any level 1 > a constitute a restricted partition with respect to
the tree resulting by viewing each cluster at level I-I as a vertex.

4. There is precisely one vertex cluster at level q, which contains all vertices.
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A vertex cluster at level 0 of a restricted multi-level partition is called a basic

vertex cluster. Since any basic vertex cluster contains just one vertex, and any cluster

resulting from the union of two clusters will have degree at most 2, any cluster of

degree 3 will consist of a single vertex.

From [F2], [F3] we have the following result.

Theorem 2.1 [F2}, [F3} The number of levels in a restricted multi-level partition is

8(logn). 0

We next recall a structure from [F2], [F3]. A topology tree for a tree T is a tree

in which each nonleaf node has at most two children, and all leaves are at the same

depth, such that:

1. A node at level I in the topology tree represents a vertex cluster at level I in
the restricted multi-level partition.

2. A node at level I > 0 has children that represent the vertex clusters at level 1-1
whose union is the,vertex cluster it represents.

When an edge is removed from T, leaving two trees, T1 and T2 , we call the

operation of splitting the topology tree for T into topology trees for T1 and T2 an

edge deletion. When two vertex disjoint trees T1 and T2 are combined into one tree

T by adding an edge with one endpoint in each of the trees, we call the operation

of combining the topology trees for T1 and T2 into a topology tree for T an edge

insertion. Once the adjacency of the endpoints of the inserted or deleted edge is

adjusted, the topology tree or trees are adjusted by a sweep upwards, updating all

affected nodes. These operations are described in detail in [F3]. From [F2], [F3] we

ha.ve the following result.

Lemma 2.2 [F2}, [F3} The time to perform an edge insertion or edge deletion with

respect to topology trees is O(log n). 0

4
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3 Review of link-cut trees

In this section, we review link-cut trees, which were introduced by Sleator and Tarjan

in [STI]. As stated in the introduction, we take the term link-cut tree to refer to

a generic data structure that admits link, cut and related operations. Implementa

tions of link-cut trees have been given in [STI] and [ST2]. Slight variations in the

specifications of link-cut trees occur in [STI] and [ST2]. We consider the following

specification, found in [STI]. Link-cut trees maintain a forest of vertex-disjoint rooted

trees, each of whose edges has a real-valued cost, under a sequence of eight operations.

parent(vertex v): If v is not a tree root, then return the parent of v, else return
null.

root (vertex v): Return the root of the tree containing v.

cost(vertex v): If v is not a tree root, then return the cost of the edge from v to
its parent.

mincost(vertex v): If v is not a tree root, then return the vertex w closest to
root(v) such that the edge from w to parent(w) is of minimum cost among edges on
the path from v to root(v).

update(vertex v, real x): Add x to the cost of each edge on the path from v to
root(v).

link(vertex v, w, real x): If v is a tree root and w is in a different tree, add an
edge of cost x that combines the two trees, making v a child of w.

cut(vertex v): If v is not a tree root, remove the edge from v to its parent, thus
dividing the tree into two trees.

evert(vertex v): Modify the tree containing v by making v the root.

As noted in [STI], evert can generally be dropped in applications involving rooted

trees. \Ve shall not supply an implementation of evert for directed topology trees,

although it is possible to give an efficient implementation.

5
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Also, costs could be associated with vertices rather than edges. (Indeed, for every

vertex other than the root, the cost of the edge to the parent can be viewed as the

cost of that vertex.) In [ST2], costs are explicitly associated with vertices, and all

operations except parent and evert are discussed (though sometimes with different

names).

An amortized time of O(log n) per operation has been achieved using dynamic

trees [STl] or splay trees [ST2]. A worst-case time of O(log n) per operation has been

achieved using biased search trees [BST] together with dynamic trees [STl].

4 Directed topology trees

We introduce our new data structure, directed topology trees in this section. We

show that link and cut operations can be performed in O(log n) time. Finally we

present an example and give some terminology.

Consider a binary (hence rooted) tree. We modify the approach in section 2 to

handle such trees. We first change the definition of a restricted partition, to simplify

the various tests relating to clustering or reclustering. A restricted partition of a

binary tree T is a partition of V into clusters such that

1. Each cluster has cardinality at most 2.

2. Each cluster that has two children (in the induced tree) has cardinality 1.

3. No two adjacent clusters can be combined and still satisfy the above.

The only difference with the rules for an undirected tree occurs at the root: We do

not allow a root with just one child to be clustered with that child if that child has

2 children. (In such a case, the root would have tree degree one if the tree were

undirected. )

Using this revised partition, we define a multi-level partition and a directed topology

tree in a fashion similar to that in section 2. We note that the restricted multi-level

6
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partition is somewhat similar to a structure that may be inferred from applying the

rake-and-compress paradigm to a rooted binary tree [MR], [CV], [ADKP].

Theorem 4.1 A directed topology tree representing a binary tree of n nodes is of

height O(1og n). Operations link and cut can be performed in O(log n) time.

Proof. Using an analysis similar to that in [F2], [F3], the number of levels in the

resulting multi-level partition is still O(1og n). The link and cut operations are analo

gous to edge insertion and edge deletion operations, and can be performed in O(log n)

time. 0

Consider the binary tree with the edge costs and vertex names shown in Figure 4.1.

Also shown in the figure is the multi-level partition of this tree. The corresponding

topology tree is shown in Figure 4.2. Each leaf, labeled with a small letter, represents a

vertex in the binary tree, and each interior node, labeled by a capital letter, represents

a nonbasic vertex cluster of the tree.

The rooted tree defined at any level of the partition will be called an induced tree.

The children of a node in an induced tree will be designated as leftchild and rightchild,

and the parent in the induced tree will be called indparent. When two nodes in an

induced tree are clustered, one node u will be the parent of the other node v. Node u

will be the topchild of the cluster, and node v will be the botchild of the cluster in the

topology tree. The cluster will be the topoparent of u and v. If a node u is clustered

by itself, then node u will be the topchild of the cluster, and botchild will be null.

5 Implementation of link-cut trees

In this section we use directed topology trees to implement link-cut trees. We first

define the notion of a restricted path, and then describe how we represent the costs

of edges in the link-cut trees. We present the algorithms for the various operations

7
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on link-cut trees, and show that each takes O(1og 17,) time. Finally, we discuss how to

a.dapt the Goldberg-Tarjan maximum flow algorithm so that topology trees can be

Llsed.

To help in understanding how we represent edge costs, we define a restricted path

for any node 10 that is not a root in its induced tree. If w is a leaf in the topology

tree, then it represents a single vertex v, and its restricted path contains only the

edge from v to its parent in the induced tree. If 10 has two children in the induced

tree, then it represents a single vertex v, and its restricted path contains only the

edge from v to its parent in the induced tree. Otherwise, w has precisely one child

ill the induced tree. In this case, if it has one child topchild(w) in the topology tree

or two children in the induced tree, then its restricted path is the restricted path for

topchild(10); otherwise its restricted path is the concatenation of the restricted path

for botchild(10) followed by the restricted path for topchild(w).

For example, consider the tree in Figure 4.1. The restricted path for dis (d, e), and

for e is (e,g). The restricted path for node C is (e,g) and for node J is (e,g), (g, h).

The restricted path for N is (a, c), (c, e), (e, g), (g, h) and the restricted path for node

Q is (a, c), (c, e), (e, g), (g, h), (h, l). Nodes l, H, M, P, Rand S do not have restricted

paths, since they are the roots of induced trees. The binary tree can be expressed as

the union of certain disjoint paths, which we call maximal restricted paths. In this

case it is the union of the restricted paths for b, d, f, j, Land Q. These maximal

restricted paths are shown in dashed lines in Figure 5.1. In this regard, topology trees

have a basis similar t.o dynamic trees.

For each nocle tv in the topology tree, we will have three additional fields, f:::.cost,

nodemin a.ncl minvert. We let f:::.cost(1O) be the incremental cost associated with w.

The actual cost. of an edge from a vertex v to its parent will equal the sum of f:::.cost( 10)

for all ancestors 'W of v in the topology tree such that v is on the restricted path for 1o.

8
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We let f:lcost of the root of any induced tree be infinity. Let minvert(w) be the bottom

endpoint of a minimum cost edge on the restricted path for w. Among all possible

choices, choose the highest such edge on the restricted path. Then nodemin(w) is the

sum of f:lcost for all ancestors (in the topology tree) of minvert(w) up to and including

w. Phrasing nodemin(w) in terms of the children of w in the topology tree gives the

following. If w is a leaf in the topology tree, then nodemin(w) is f:lcost( w). If w has

two children in the induced tree, or w has precisely one child in the induced tree and

one child in the topology tree, then nodemin(w) is f:lcost(w)+nodemin(topchild(w)).

If w has precisely one child in the induced tree and two children in the topology tree,

then nodemin(w) is f:lcost( w) +min{nodemin(topchild(w)), nodemin(botchild(w)n.
We consider the example in Figures 4.1 and 4.2. Node f in the topology tree

has just one ancestor, itself, whose restricted path contains f. Thus the actual cost

of edge (J, indparent(J)) is just f:lcost(J) = 9. Node 9 in the topology tree has

ancestors g, D, J, N, and Q whose restricted paths contain g. Thus the actual cost

of edge (g, indparent(g)) is 3 + 0 + (-1) + 2 + 0 = 4.

We show how to implement update(v, x) and a slight generalization of mincost(v).

\Ve ta.ke advantage of the fact that every edge is the edge from some nonroot vertex to

its parent. To find the minimum on the path from v to the root, we do the following.

We search up in the topology tree from the leaf representing v. We keep track of

the smallest cost edge found so far on the portions of restricted paths that we have

already explored and are not contained in the current restricted path. We also keep

track of the smallest cost of any edge on the portion of the current restricted path

that we have explored so far. At each level we add in f:lcost( w), and test if w, the

ancestor of v at that level, has a sibling w_sib in the topology tree that is its parent

in the induced tree. If so, we need to update the appropriate smallest costs so far,

considering which of the clustering rules was used on wand w_sib. When we reach

9
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/* cost of min cost edge on path from v to root */
/* lower endpoint of corresponding edge */

/* smallest cost of edge to which Acost can be added */
/* lower endpoint of corresponding edge */

the root of the topology tree, we have found the lowest cost edge on the path between

v and the root.

We now give our procedure to find the minimum cost curr_min of an edge on the

path from vertex v to the root, and the vertex curr_vert closest to the root such that

the edge from this vertex to its parent achieves this minimum cost.

proc mincostvert(v)
curr_mzn f- 00

curr_vert f- nil
temp_min f- 0
temp_vert f- v
Wf-V

while w is not the root of the topology tree do
temp_min f- temp_min +Acost(w)
if w has a sibling w_sib in the topology tree

and w_sib is the parent of w in the induced tree
then

if w_sib has precisely one child and is not the root
then

choosemin(temp_min, temp_vert, nodemin(w_sib), minvert(w....sib))
else

choosemin(curr_min, curr_vert, temp_min, temp_vert)
temp_min f- nodemin(w_sib)
temp_vert f- minvert(w....sib)

endif
endif
w f- parent of w in the topology tree

endwhile

Note that if w_sib is the root of some induced tree, then temp_min is reset to 00,

and all succeeding values of temp_min will be 00, since 00 plus some constant is 00.

Procedure findmin uses the following macro, which updates a minimum value, and

the edge that realizes that minimum.

macro choosemin(some_min, some_vert, triaLvalue, triaLvert)
if some_min ~ trial-value
then

10
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some_min f- trial-value
some_vert f- trial-vert

endif

The procedure to find eost(v) is similar in structure, but simpler than, mineostvert.

To add a value x to every edge on the path from v to the root, we do the following.

We search up in the topology tree from the leaf representing v. At each level we adjust

the nodemin value. If the current restricted path is extended upwards, or the new

restricted path is a subpath of a different restricted path, we add x to the !leost and

nodemin fields.

We now give our procedure to add the value x to every edge on the path from

vertex v to the root.

proc update(v, x)
!leost(v) f- !leost(v) + X

Wf-V

while W is not the root of the topology tree do
Recompute nodemin(w) and minvert(w).

if w has a sibling w_sib in the topology tree
and w_sib is the parent of w in the induced tree

then
!leost(w_sib) f- !leost(w_sib) + x
nodemin(w_sib) f- nodemin(w_sib) + x

endif
w f- parent of w in the topology tree

endwhile

Note that at some point procedure update adds x to !leost of the root of some

induced tree. This does not matter, since 00 plus some constant will be 00.

When we perform link(v, w, x), we shall set !leost(v) to x. Note that when

the corresponding two topology trees are merged, any nonleaf node u that has a

nonzero !leost(u) and that gets handled in the merging, must have had its !leost value

distributed to its children in the topology tree. We call this operation a cleaning. As

11
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soon as it becomes apparent that a node will be handled, it and all of its uncleaned

ancestors must be cleaned. Similarly, when a eut(v) is performed, any nonleaf node

that will be handled should have its !:leost distributed downward. This cleaning will

take D(1og n) time overall, since ancestors that have been cleaned can be marked,

so that they are not recleaned if they are ancestors of another node that through a

change in its cluster must be cleaned.

Theorem 5.1 Directed topology trees allow mineostvert, cost, update and root op

erations to be performed in D(1og n) time, and parent in constant time.

Proof. To find a parent in the original tree, just follow the indparent pointer. To find

the root in the original tree, follow topoparent pointers to the root of the topology

tree, and then follow topehild pointers down to a leaf in the topology tree. This will

clearly take D(1og n) time. The procedure cost just moves up the topology tree until

it reaches the end of the current restricted path, adding in the !:leost of the current

node as it goes. This clearly takes constant time per level. Procedures mincostvert

and update also take constant time per level. 0 ,

'vVe next discuss how to adapt the maximum flow algorithm of Goldberg and

Tarjan [GT] so that our directed topology trees can be used. We note that applying

the graph transformation of [H] in the obvious fashion would increase the running time

considerably. The transformation would increase the number of vertices to 8(m), and

thus the running time of the Goldberg-Tarjan algorithm to D(m2 10g m).

Instead, we do the following. When a link(v, u, x) operation would add a third

child to vertex u, we use a new operation inserLlink. The operation first creates

a new vertex u f
• Then it performs a cut(w ), where w is leftchild(u), followed by

three links: link(w, u f
, x'), link(v, u' , x) and link(u' , u, 00). The value of x' is the value

associated with edge (w, u) once the ancestors of w have been cleaned. Rather than

12
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reorganize the topology trees after each of the individual operations, the topology tree

is reorganized in one upwards pass after the changes at the lowest level are made.

Any new edge introduced from a new vertex u' to its parent u is treated as being of

length 0, so that the valid labeling in the Goldberg-Tarjan algorithm is extended to

have d(u') = d(u). In addition we do not count u' in our count of vertices in a given

link-cut tree. Whenever we perform a link, we charge the new vertex u' to the vertex

v that is no longer a root. Thus the actual number of nodes in any of our link-cut

trees is no greater than 2k.

To perform a cut(v) operation, we cut the edges into any new node v', and delete

all such nodes. We also cut v from its parent. Note that the rebuilding of topology tree

fragments should proceed only as all relevant edges have been cut from the fragment.

Thus we do work proportional to dlog k, where d is the number of edges actually cut.

Charging this cost to the d link operations that initially set up this structure show

that the running time of the algorithm is not degraded.

Theorem 5.2 The Goldberg- Tarjan algorithm for finding a maximum flow can be

adapted to use directed topology trees, and still run in O(mn 10g(n21m)) time, where

m is the number of edges and n the number of vertices in the network.

Proof. The proof follows from the above discussion. 0

6 Implementation of dynamic expression trees

In this section we discuss dynamic expression trees based on topology trees. We first

define an expression tree and the operations that act on it. We then specify what

information to associate with each node in the topology tree. We then describe how

the operations are implemented, and show that the time for each is O(logn).

We first define an expression tree. Let (8,+,*,0,1) be a semiring. (8 is a set of

13
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elements closed under + and *, + and * are associative, 0 is the identity for +, 1 is

the identity for *, + is commutative, and * distributes over +.) An expression tree

over S is either a binary tree consisting of a single vertex with a value taken from S,

or it is a tree consisting of a root with a label that is either + or * and a left subtree

and a right subtree that are both expression trees.

Consider a collection of expression trees for expressions over S. We handle the

following operations.

makeleaftree(value x): Return an expression tree consisting of a single vertex with
value x.

destroyleaftree(vertex v): If v is the root of an expression tree consisting of just
a leaf, delete this tree.

construct(operator 8 ,vertex u, v): If u and v are roots of expression trees,
return an expression tree in which the root is labeled with 8 and the left child of the
root is u and the right child is v,.

destruct(vertex v): If v is the root of an expression tree not consisting of just a
leaf, delete the root and return as two expression trees the subtree rooted at the left
child of the root and the subtree rooted at the right child of the root.

evaluate(vertex v): Return the value of the subexpression associated with the
subtree rooted at vertex v.

change(vertex v, value x): If v is a leaf in an expression tree, then reset the
value of this leaf to be x.

swap(vertex 1l, v): If u is the root of an expression tree TI , and v is a nonroot
vertex in another expression tree T2 , then TI and T2 are replaced by expression trees
T{ and T~, where T{ is the subtree of T2 rooted at v , and T~ is T2 with the subtree
rooted at v replaced by TI •

This is the same set of operations as presented in [CT], except that their operations

graft and prune, which are not quite symmetrical, are replaced by our single operation

swap. It is not hard to verify that swap can be used to simulate graft and prune.

14
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Let T be an expression tree for an expression E over S. We show how to store

information about E in the nodes of the topology tree for T. We note that * is not

assumed to be commutative.

Let each instance of an operator or value in T label a leaf in the topology tree.

There will be three types of nonleaf nodes in the topology tree. If a node v represents

a cluster that has no children in the induced tree at a given level, then that node

must be labeled with a value. If a node v represents a cluster that has 2 children in

the induced tree at a given level, then that node must be labeled with an operator.

Otherwise, the node represents a cluster that has one child in the induced tree at a

given level. In this case the node is labeled by a linear form A * X * B + C, where

A, Band C are constants and X represents the value of the child of the cluster in

the induced tree, which is at that point unknown. We represent this form by a triple

(A, B, C). We use the triple notation to represent single values too, representing a

single value C by the form (0,0, C).

In clustering a node v with a child u, generate the label of the cluster as follows.

If v is labeled with an operator, then u must be labeled by some triple (0,0, C).

If the operator labeling v is a +, then label the parent cluster with (1,1, C), and

otherwise la.bel the parent cluster with (1, C, 0). If v is not labeled with an operator,

then it is labeled with a triple (A, B, C) and u is labeled with a triple (D, E, F). The

pa.rent cluster should be labeled with (G, H, J), where G = A * D, H = E * B, and

J = A * F * B + C. If a node v is clustered by itself, then the label of its parent

cluster will remain the same.

In the case in which the ring is commutative, the form is somewhat simpler:

A * X + B. In that case triples are replaced by pairs. If v is labeled with a +, then

label the parent cluster with (1, C). If v is labeled with a *, then label the parent

cluster with (e,O). If v is labeled with a pair (A,B), then u must be labeled with a
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pair (C, D). The parent cluster should be labeled with (E, F), where E = A *C and

F = A*D+B.

We now discuss how to perform each operation on the directed topology tree. Op

erations makeleaftree and destroyleaftree can each be performed in a straightforward

fashion. Operation construct is implemented by creating a new node and setting the

a.djacency between it and the nodes that will be its left and right children, and then

rebuilding the topology tree bottom-up in a fashion similar performing a link oper

a.tion. Operation destruct is implemented by reclaiming the root of the expression

tree and setting the adjacency between it and its children, and then rebuilding the

topology tree bottom-up in a fashion similar performing a cut operation.

Operation evaluate(v) could be implemented by performing a swap with an arbi

trary leaf tree, reading off the value at the root, and then swapping back again, but

here is a faster method. If v is a leaf in the induced tree (i.e., in the expression tree

itself), return its value. Otherwise, start with the leaf v in the topology tree, and note

the operator 8 labeling it. Then proceed upward through the topology tree, looking

for the lowest two ancestors w' and w" of v such that each of w' and w" has two

children in the topology tree, topchild(w') is on the path from w' to v in the topology

tree, and similarly for w". Let c' be the value represented at w' and c" the value

represented at w". If botchild(w") is the right child of topchild(w") in the induced

tree, then return the value c' 8 c", else return c" 8 c' . The operation change(v,x)

requires that the path in the topology tree from the leaf representing vertex v to the

root be traversed, and the triple (or pair) at each node visited be recomputed. The

.'3wap(u, v) operat ion is implemented by setting the adjacency between nodes u, v and

-i.ndparent(v), and then rebuilding the topology tree bottom-up in a fashion similar

performing a hnk or cut operation.

Theorem 6.1 Using directed topology trees, each of the expresswn tree operations
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can be performed in o(log n) time, where n is the size of the corresponding expression

trees.

Proof. The operations makeleaftree and destroyleaftree each take just constant time.

The remaining operations take time proportional to the time to traverse a path in

the topology tree and lor the time to perform an operation similar to a link or cut.

Thus the total time for any operation is O(log n). 0

In Figure 6.1, an expression tree is given for an expression over a commutative

semi ring, along with a multi-level partition. A topology tree for the expression tree

is given in Figure 6.2. Whenever a node v has two children u and w in the topology

tree, where 1l is the parent of w in the induced spanning tree, u is shown as the right

child of v. Instead of labeling nodes with the pair notation, for clarity we omit the

multiplicative factors of 1 and additive factors of O. Also, we use a question mark to

hold the place of an unknown. Thus (9, 0), which represents "9 * X + A" is shown as

"9 * 7", and (1,8), which represents "1 * X + 8" is shown as "? + 8".

To evalua.le t.he subexpression 8 + 6 * 9, we are passed a pointer to the leaf in

the t.opology t.ree t.hat represents the + sign of this subexpression. Searching up the

torology t.ree, we find w' to be the node labeled "? + 8", whose botchild is labeled

with value 8, and w" to be the node labeled "186", whose botchild is labeled with

value .54. Since botehild(w") is the right child of topchild(w") (See Figure 6.1.), the

value returned should be 8 +54. (Of course the order of operands doesn't matter in

this case, since the operators are both commutative.)

7 Experimental results

In this section we discuss some experimental comparisons between directed topology

Crees and splay trees, when both are used to implement link-cut trees. To generate

reasonable sequences of instructions, we have considered the sequence of operations
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generated as a result of running the Goldberg-Tarjan maximum flow algorithm [GT].

The goal of these tests has not been to identify the relative performance of the data

structures with high precision. Rather it is to see if one data structure clearly dom

inates the other. No extensive search was made to determine if certain types of

networks are more amenable to one approach or the other. No such trends have been

suggested by the tests that we have made.

The motivation for testing both data structures within the framework of the

Goldberg-Tarjan algorithm is that it provides a more "real-to-life" sequence of in

structions than a more ad hoc generation method. It is well-known that splay trees

do better when there is a substantial locality of reference, so it was felt to be impor

tant to have the sequence of operations generated by an application identified by the

original aut.hors. Of course, we understand that other maximum-flow algorithms may

be faster in practice than the Goldberg-Tarjan algorithm.

The splay trees, t.he topology trees, and the Goldberg-Tarjan algorithm were coded

by an undergraduate. The version of splaying employed is the standard 3-pass version.

The code was written in C, using the macro facility liberally. Some care was taken to

ensure that approximately the same number of function calls occurred in competing

executions. The -0 option was used for the optimization of the C code. From a

viewpoint of fairness, a serious review of the code was made to ensure that the "deck

hadn't been stacked" in favor of topology trees.

The code has been tested on graphs generated by the network generator NETGEN

[KNS] as corrected by [BCJL]. The instances of the maxflow problem generated

by NETG EN each have 1000 nodes. For each value of average node degree 20d, for

d = 1,2.·· . ,9. two instances were generated. Consequently, the parameter k = n2/m,

the hound on the size of individual trees in the Goldberg-Tarjan algorithm, ranged

from 11 to 100.
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The tests were run on a SPARC station IPC. (This is a 16 megabyte machine rated

at 16.6 mips.) The execution times of various functions in the code were tabulated

using the unix function prof It is understood that interrupts may affect the exact

timings during a run; however each example was run twice, with variation between

runs being at most about 3%.

Timings are given for a collection of graphs in Table 7.1. Given in seconds are

both the total execution time and time spent in performing link-cut tree operations.

The time for performing the link-cut tree operations was larger for topology trees by

a factor that ranged from around 1.40 for graphs with average degree 10 to around

1.56 for graphs with average degree 90. The ratio for tree operations seems to be

worse for smaller size trees, reflecting perhaps the fact that the ratio (log(2k)) / (log k)

is larger for small k. In any event, the topology trees do well considering their greater

size. The total time was larger for topology trees by a factor that ranged from around

l.26 for graphs with average degree 10 to around 1.04 for graphs with average degree

00. The ratio for total time should decrease as tree size decreases, since there is more

work between trees.

Acknowledgement.

I would like to acknowledge the programming assistance of Sean Vyain and Sean

Ahern.

References

[ADKP] K. Abrahamson, N. Dadoun, D. G. Kirkpatrick, and T. Przytycka. A simple

para.llel tree contraction algorithm. J. Algorithms, 14:287-302, 1989.

[BST] S. W. Bent, D. D. Sleator, and R. E. Tarjan. Biased search trees. SIAM J.

on Computing, 14:545-568, 1985.

[I3CJL] R. G. I3land, J. Cheriyan, D. L. Jensen, and L. Ladanyi, 1992. personal

communica.tion.

19



www.manaraa.com

[CT] R. F. Cohen and R. Tamassia. Dynamic trees and their applications. In Pro

ceedings of the 2nd A CM-SIAM Symposium on Discrete Algorithms, pages

52-61, 1991.

[CV] R. Cole and U. Vishkin. The accelerated centroid decomposition technique

for optimal parallel tree evaluation in logarithmic time. Algorithmica, 3:329

346, 1988.

[EITTWY] D. Eppstein, G. F. Italiano, R. Tamassia, R. E. Tarjan, J. Westbrook,

and M. Yung. Maintenance of a minimum spanning forest in a dynamic

plane graph. J. of Algorithms, 13:33-54, 1992.

[Fl]

[F2]

[F3]

[GT]

[G]

[H]

[JM]

[KNS]

G. N. Frederickson. Data structures for on-line updating of minimum span

ning trees, with applications. SIAM J. on Computing, 14:781-798, 1985.

G. N. Frederickson. Ambivalent data structures for dynamic 2-edge con

nectivity and k smallest spanning trees. In Proceedings of the 32nd IEEE

Symposium on Foundations of Computer Science, pages 632-641, 1991.

G. N. Frederickson. Ambivalent data structures for dynamic 2-edge connec

tivityand k smallest spanning trees. CSD-TR-91-048, Purdue University,

Department of Computer Science, revised February 1992.

A. V. Goldberg and R. E. Tarjan. A new approach to the maximum-flow

problem. J. ACM, 35:921-940, 1988.

M. T. Goodrich. Planar separators and parallel polygon triangulation. In

Proceedings of the 24th ACM Symposium on Theory of Computing, pages

507-516, 1992.

F. Harary. Graph Theory. Addison-Wesley, Reading, Massachusetts, 1969.

D. S. Johnson and C. C. McGeoch. Dimacs implementation challenge work

shop algorithms for network flows and matching. Technical Report 92-4,

DIMACS Center for Discrete Mathematics and Theoretical Computer Sci

ence, 1992.

D. Klingman, A. Napier, and J. Stutz. NETGEN: A program for generating

large scale capacitated assignment, transportation, and minimum cost flow

problems. Management Sci., 20:814-821, 1974.

..W



www.manaraa.com

[MR] G. L. Miller and J. H. Reif. Parallel tree contraction and its application. J.

Comput. System Sci., to appear.

[ST1] D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees. J.

Comput. System Sci., 26:362-391, 1983.

[ST2] D. D. Sleator and R. E. Tarjan. Self-adjusting binary search trees. J. ACM,

32:652-686, 1985.

21



www.manaraa.com

Figure 4.1. Binary tree with edge costs, vertex names, and multi-level partition.
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Figure 4.2. Topology tree with !1costs for the binary tree in Figure 4.1.
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Figure 5.1. Maximal restricted paths for the binary tree in Figure 4.1.
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Figure 6.1. Expression tree and a multi-level partition
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Figure 6.2. Topology tree for the expression tree in Figure 6.1.
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number of number of splay tree topology tree
generator vertices edges total link-cut total link-cut
NETGEN 1,000 10,000 252 106 316 146
NETGEN 1,000 10,000 254 106 322 149
NETGEN 1,000 20,000 397 110 460 156
NETGEN 1,000 20,000 393 109 461 154
NETGEN 1,000 30,000 536 114 600 166
NETGEN 1,000 30,000 535 114 599 164
NETGEN 1,000 40,000 672 115 724 163
NETGEN 1,000 40,000 678 120 742 179
NETGEN 1,000 50,000 817 121 879 186
NETGEN 1,000 50,000 818 120 873 183
NETGEN 1,000 60,000 950 117 989 173
NETGEN 1,000 60,000 956 126 1023 200
NETGEN 1,000 70,000 1088 124 1147 191
NETGEN 1,000 70,000 1115 140 1196 237
NETGEN 1,000 80,000 1240 124 1271 187
NETGEN 1,000 80,000 1251 134 1310 224
NETGEN 1,000 90,000 1379 120 1411 185

Table 7.1. Results of experiments
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